Lecture 8:

PN Junctions and Diodes Circuits

Gu-Yeon Wei
Division of Engineering and Applied Sciences
Harvard University
guyeon@eecs.harvard.edu
Overview

• Reading
 – S&S: Chapter 3.1~3.5

• Supplemental Reading

• Background
 – Let’s briefly review pn junctions again. This time, we will look at it more from a circuits perspective ala Sedra/Smith. Hence, please refer to Lecture 7 for a more detailed description that discusses band diagrams.
Ideal Diode

- Let’s begin with an ideal diode and look at its characteristics

![Diode Diagram](image)

(a) Anode i and Cathode v

(b) Reverse bias and Forward bias

(c) $v < 0 \Rightarrow i = 0$

(d) $i > 0 \Rightarrow v = 0$
Rectifier

- One common use for diodes is to build rectifier circuits
 - Only lets through positive voltages and rejects negative voltages
 - This example assumes an ideal diode
Characteristics of Junction Diodes

- Given a semiconductor PN junction we get a diode with the following characteristics.
 - “Turn on” voltage based on the “built-in” potential of the PN junction
 - Reverse bias breakdown voltage due to avalanche breakdown (on the order of several volts)
Diode Current Equations

- The forward bias current is closely approximated by

\[i = I_S\left(e^{v/nV_T} - 1\right) \]

where \(V_T \) is the thermal voltage (~25mV at room temp)
- \(k = \) Boltzman’s constant = \(1.38 \times 10^{-23} \) joules/kelvin
- \(T = \) absolute temperature
- \(q = \) electron charge = \(1.602 \times 10^{-19} \) coulombs
- \(n = \) constant dependent on material between 1 and 2 (we will assume \(n = 1 \))
- \(I_S = \) scaled current for saturation current that is set by dimensions
 - Notice there is a strong dependence on temperature
 - We can approximate the diode equation for \(i \gg I_S \)

\[i \approx I_S e^{v/nV_T} \]

- In reverse bias (when \(v \ll 0 \) by at least \(V_T \)), then

\[i \approx -I_S \]

- In breakdown, reverse current increases rapidly… a vertical line
Movement of Carriers

- Holes and electrons move through a semiconductor by two mechanisms:
 - Diffusion – random motion due to thermal agitation and moves from area of higher concentration to area of lower concentration and is a function of the concentration gradient
 \[J_p = -qD_p \frac{dp}{dx}, \quad J_n = qD_n \frac{dn}{dx} \]
 - \(D_{p,n} \) = diffusion constant or the diffusivity of carriers (holes and electrons)
 - Drift – carrier drift occurs due to an electric field applied across a piece of silicon. The field accelerates the carriers (electrons or holes) and acquire a velocity, called drift velocity, dependent on a constant called mobility \(\mu_{p,n} \)
 \[v_{\text{drift}} = \mu_p E \text{ or } \mu_n E \]
 \[J_{p-\text{drift}} = q\mu_p E, \quad J_{n-\text{drift}} = q\mu_n E \]
 \[J_{\text{total-drift}} = q(p\mu_p + n\mu_n)E \]
- Einstein’s relationship
 \[\frac{D_p}{\mu_p} = \frac{D_n}{\mu_n} = V_T \]
Doping

- Intrinsic semiconductor have equal concentration of holes and electrons. We can “dope” the semiconductor to have a larger concentration of holes or electrons.
 - Negatively doping the semiconductor with Arsenic or Phosphorus (more electrons) gives rise to n type
 - These atoms donate electrons and so are called donors.
 - Adding N_D concentration gives rise to n_{n0} free electrons and in thermal equilibrium...
 $$n_{n0} \cong N_D$$
 - In thermal equilibrium, the product of free holes and electrons is constant
 $$n_{n0}p_{n0} \cong n_i^2$$
 - Where n_i is the concentration of free carriers in intrinsic silicon.
 - The concentration of hole (due to thermal ionization) is...
 $$p_{n0} \cong \frac{n_i^2}{n_{n0}}$$
 - Positively doping with Boron (more holes) gives rise to p type
 - Boron accepts electrons and called acceptor.
 - Adding N_A concentration gives rise to p_{p0} free holes
 $$p_{p0} \cong N_A$$
In equilibrium, diffusion current (I_D) is balanced by drift current (I_S)

Depletion region – hole that diffusion across the junction into the n region recombine with majority carriers (electrons) and electrons that diffuse across into the p region recombine with holes. This process leaves bound charges to create a net electric field in the depletion region (no free carriers). Also called the space-charge region.

- The presence of an electric field means there is voltage drop across this region – called the barrier voltage or built-in potential
- The barrier opposes diffusion until there is a balance

In equilibrium, diffusion current is balanced by drift current that occurs due to the (thermal) generation of hole electron pairs
Junction Built-In Voltage

- With no external biasing, the voltage across the depletion region is:
 \[V_0 = V_T \ln \frac{N_A N_D}{n_i^2} \]

 - Typically, at room temp, \(V_0 \) is 0.6~0.8V
 - Interesting to note that when you measure across the \(pn \) junction terminals, the voltage measured will be 0. In other words, \(V_0 \) across the depletion region does not appear across the diode terminals. This is b/c the metal-semiconductor junction at the terminals counteract and balance \(V_0 \). Otherwise, we would be able to draw energy from an isolated \(pn \) junction, which violates conservation of energy.
Width of Depletion Region

- The depletion region exists on both sides of the junction. The widths in each side is a function of the respective doping levels. Charge-equality gives:

\[qx_p AN_A = qx_n AN_D \]

- The width of the depletion region can be found as a function of doping and the built-in voltage…

\[W_{dep} = x_n + x_p = \sqrt{\frac{2\varepsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D} \right)} V_0 \]

\(\varepsilon_s \) is the electrical premittivity of silicon = 11.7\(\varepsilon_0 \) (units in F/cm)
pn Junction in Reverse Bias

- Let’s see how the pn junction looks with an external current, I (less than I_S)
 - electrons leave the n side and holes leave the p side → depletion region grows → V_0 grows → I_D decreases
 - in equilibrium, there is a V_R across the terminals (greater than V_0)
- If $I > I_S$, the diode breaks down

- As the depletion region grows, the capacitance across the diode changes.

$$W_{dep} = xn + xp = \sqrt{\frac{2\varepsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D} \right)(V_0 + V_R)}$$

- Treating the depletion region as a parallel plate capacitor…

$$C_j = \frac{C_{j0}}{\sqrt{1 + \frac{V_R}{V_0}}}$$
pn Junction in Forward Bias

- Now let’s look at the condition where we push current through the pn junction in the opposite direction.
 - Add more majority carriers to both sides → shrink the depletion region → lower V_0 → diffusion current increases
- Look at the minority carrier concentration…
 - lower barrier allows more carriers to be injected to the other side
• Excess minority carrier concentration is governed by the law of the junction (proof can be found in device physics text). Let’s look at holes….

\[p_n(x_n) = p_{n0} e^{V/V_T} \]

• The distribution of excess minority hole concentration in the n-type Si is an exponentially decaying function of distance

\[p_n(x) = p_{n0} + \left[p_n(x_n) - p_{n0} \right] e^{-(x-x_n)/L_p} \]

 where \(L_p \) is the diffusion length (steepness of exponential decay) and is set by the excess-minority-carrier lifetime, \(\tau_p \). The average time it takes for a hole injected into the n region to recombine with a majority carrier electron

\[L_p = \sqrt{D_p \tau_p} \]

• The diffusion of holes leads to the following current density vs. \(x \)

\[J_p = q \frac{D_p}{L_p} p_{n0} \left(e^{V/V_T} - 1 \right) e^{-(x-x_n)/L_p} \]
• In equilibrium, as holes diffuse away, they must be met by a constant supply of electrons with which they recombine. Thus, the current must be supplied at a rate that equals the concentration of holes at the edge of the depletion region \((x_n) \). Thus, the current due to hole injection is:

\[
J_p = q \frac{D_p}{L_p} p_{n0} \left(e^{V/V_T} - 1 \right)
\]

• Current due to electrons injected into the p region is…

\[
J_n = q \frac{D_n}{L_n} n_{p0} \left(e^{V/V_T} - 1 \right)
\]

• Combined…

\[
I = A \left(q \frac{D_p}{L_p} p_{n0} + q \frac{D_n}{L_n} n_{p0} \right) \left(e^{V/V_T} - 1 \right)
\]

\[
I = I_s \left(e^{V/V_T} - 1 \right)
\]
Diode Circuits

- Look at the simple diode circuit below. We can write two equations:

\[I_D = I_S e^{\frac{V_D}{nV_T}} \quad \text{and} \quad I_D = \frac{V_{DD} - V_D}{R} \]

![Diode Circuit Diagram]

- Diode characteristic
- Operating point (Q)
- Load line
- Slope: \(-\frac{1}{R}\)
Diode Small Signal Model

- Some circuit applications bias the diode at a DC point \(V_D \) and superimpose a small signal \(v_d(t) \) on top of it. Together, the signal is \(v_D(t) \), consisting of both DC and AC components.
 - Graphically, can show that there is a translation of voltage to current \(i_d(t) \).
 - Can model the diode at this bias point as a resistor with resistance as the inverse of the tangent of the \(i-v \) curve at that point.
 \[
 i_D(t) = I_S e^{(V_D + v_d)/nV_T} = I_S e^{V_D/nV_T} e^{v_d/nV_T} = I_D e^{v_d/nV_T}
 \]
 - And if \(v_d(t) \) is sufficiently small then we can expand the exponential and get an approximate expression called the small-signal approximation (valid for \(v_d < 10\text{mV} \)).
 \[
 i_D(t) \approx I_D \left(1 + \frac{v_d}{nV_T} \right) = I_D + i_d \rightarrow i_d = \frac{I_D}{nV_T} v_d
 \]
 - So, the diode small-signal resistance is...
 \[
 r_d = \frac{nV_T}{I_D}
 \]
• Perform the small signal analysis of the diode circuit biased with V_{DD} by eliminating the DC sources and replacing the diode with a small signal resistance
 – The resulting voltage divider gives:
 \[v_d = v_s \frac{R_d}{R + R_d} \]
• Separating out the DC or bias analysis and the signal analysis is a technique we will use extensively